
Image Inpainter

COMP9517 Major Project

Willy Mai - wmai@cse.unsw.edu.au Xi Chen - xic@cse.unsw.edu.au

19th October 2010

Abstract

The focus of this project is to develop a flexible, user-friendly and simple open source tool for image Inpaint-
ing. A number of image Inpainting algorithms from research papers have been implemented. The variety of
algorithms will give the flexibility and usability of the software, while the GUI user interface provides quick
and easy access to parameter adjustments and other functions. Each algorithm will be discussed in detail
along with implementation details in this report. We will conclude with some possible extensions and ways
the software can be improved.

Introduction

Image inpainting is the art and science behind re-constructing parts of an image in a visually undetectable
way. Inpainting has been an art form for many centuries, being carried out by a skilled image restoration
artist. Research in partnership with these artists and the general increase in computing power gave rise to
sophisticated algorithms for recovering the lost of corrupt portions of an image.

While image inpainting is related to noise removal, and sometimes algorithms share a majority of their
ideas, image inpainting is fundamentally a different problem to noise removal. Noise often carry some sort of
information about their underlying data. For example, additive noise contains the original image data, but
with some amount of noise ”added” to the image. Image inpainting, on the other hand, the ”lost” regions
contain absolutely no information relating to the original data.

The algorithms we have implemented (and will be discussed in more detail below) are:

• Gaussian Pyramid Blur

• Fast Digital Image Inpainting [1]

• Bertalmio [2]

• A. Telea - Fast Marching Method [3]

1



• Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting [4]

• Exemplar-Based Image Inpainting [5]

• Image Inpainting Based on Local Optimisation [7]

Goal

Our goal is through research & implementation, to gain a full understanding of various inpainting algorithms.
We also, along with understanding, aim to produce a versatile tool for image inpainting.

Image Separation

Our program offers 4 methods of image separation (only used for algorithms that assume greyscale, and
require separation for colored images).

• Greyscale: Images are separated into RGB, then each of the colors are multiplied by a brightness
factor, and the results added, to produce a greyscale image. The factors used were: B = B ∗ 0.0114,
G = G ∗ 0.587, R = R ∗ 0.299. Colored images will produce greyscale results with this method of
separation.

• Desaturate: Image RGB is simply averaged, to produce a greyscale image. Colored images will produce
greyscale results with this method of separation.

• RGB Separation: The R, G and B channels of the image are treated as separate greyscale images, the
inpainting algorithm is run separately for all 3 channels. The reults are then combined to form the
resulting color image.

• Vector Space Separation:
The image is treated as 3 separate images, the length ρ, and the angles Ω and Ψ.

Figure 1: Relationship between vector space & RGB color space. Image Source: [2]

2



Details: Gaussian Pyramid Blur

Overview

The gaussian pyramid blur is a simple algorithm we have come up with, which aims to fill in large areas
quickly.

This algorithm can be used for applications where continuity is important around the borders of the
inpainting region, but not so important around the middle of the regions. One example of such an application
would be in texturing for a 3D computer model.

Instead of leaving the parts of the model texture that are ”not used” in the UV map of the model to be
black, we instead quickly inpaint this region. When the texture is resized, the black does not ”creep into”
the image regions, and create black texturing ”seams” in the model render.

(a) Original 1024x1024
ground texture.

(b) Ground texture with
unused region inpainted.

Figure 2: Textures.

(a) Model render using original 1024x1024 ground
texture.

(b) Model render using ground texture resized to
64x64. Note the unused magenta regions ”invad-
ing” the used regions, due to downscaling errors
and interpolation.

(c) Model render using inpainted ground texture
resized to 64x64. Note that the ”invading” regions
no longer appear visible, due to the inpainting.

Figure 3: Model render results.

3



Algorithm

Conceptually, the algorithm treats the image mask Ω as the alpha channel to image I, and builds an image
pyramid. It then overlays and combines this image pyramid according to the following formula:

Rn+1 = (Rn(1− αn) + Inαn),∀n ∈ N

where N is the list of images in the pyramid, In is the nth smallest image octave in the pyramid, Rn is the
intermediate result image at stage n, αn is the alpha channel image for n.

Thus, we start with the smallest image I0 (1x1 pixels) in the pyramid, up-size it back to the original size
of the image. To this, we add the next image in the pyramid (2x2), I1. If a pixel in this next image which
has an alpha value of 1, it will ”replace” the underlying pixel. This is the common color ”transparency”
formula. Then, we add the next image, and so on, until we finally add the original image.

This process will produce less blurred pixels are the mask region borders. It will use more blurred versions
of the image for the pixels further away from the region borders.

(a) R0 (b) R1 (c) R2 (d) R3 (e) R4

Figure 4: Intermediate stages of Rn.

Implementation

The algorithm pseudocode for our implementation:

For each octave o = 1 to O
Apply simple blur kernel to the original source image with a radius r = k + (O-o)j
Where

k = the base radius.
o = the octave number.
j = is the factor by which the radius increases by.

Use ”transparency” formula to alpha-blend blurred image onto current result.

Where the final octave o = O is the original image, unblurred. The image mask is treated as the alpha
channel, and is thus, blurred with the image.

Since OpenCV doesnt have a blur function that takes in a mask, to achieve a estimated alpha channel
blur effect, this following algorithm is used for blurring:

Set the regions to be inpainted in the original image to zero.
Blur the 3-color image.
Blur the image alpha channel (the mask image).
Normalize the color vector using the alpha value:

I(x, y) =

{
I(x,y)
α(x,y) if α(x, y) > 0

0 otherwise

4



For our implementation, we used the basic square blurring kernel, which is just an average over a pixel
of the pixels in the square window around it. This has been chosen over gaussian for two reasons. First, it is
faster than gaussian. Secondly, it reduces the error introduced by our alpha channel blur estimation above.

Results

(a) image 1 (b) result 1

(a) image 2 (b) result 2

Strengths & Limitations

This algorithm is very fast, even for large areas to be filled in. It also preserves good visual continuity near
the borders of the inpainting region; the images seem to ”continue” visually into the inpainted region border.
However, the algorithm does not preserve strong structure information, nor will reproduce any texturing of
the target region. The middle pixels of the inpainting regions are very blurred, and only have general color
information.

Conclusion

The algorithm successfully fills in large areas very quickly. Although the filled in region is badly blurred,
the general color information is retained. This could be useful for applications where one needs to fill in
”useless” areas of the image quickly, and is only concerned about the visual continuity of the border of the
area, and not too fussed about the contents of the inpainted region, such as the texturing example given.

Although our implementation could be improved with a more proper implementation of masked blur, the
estimation algorithm used is quite sufficient.

While a more sophisticated fast inpainting algorithm such as navier-stokes or fast marching method could
quite possibly do this job better and faster, this algorithm provides a very solid starting point for a naive
algorithm.

5



Details: Fast Digital Image Inpainting

Overview

This paper provides a very simple kernel based inpainting algorithm designed to be faster than [2], while
being much easier to implement. It is an iterative algorithm which repeatedly convolves the area to be
inpainted by a filter with a zero centre element to propagate information from outside of the inpainting area
to the inside. Its disadvantage lies in its poor transmission of both structural and textural information,
providing results that appear similar to blurring. The algorithm is intended for the inpainting of narrow
strips for removing thin lines and is stated as such by the authors.

Algorithm

The algorithm works by repeatedly convolving the area to be inpainted Ω by a weighted average kernel which
only considers contribution from neighbouring pixels, that is, the centre pixel has zero weight. The paper
presents two example kernels: a b a

b 0 b
a b a

c c c
c 0 c
c c c


where a = 0.073235, b = 0.176765, c = 0.125. Eventually, the algorithm will converge and inpainted pixels
will stabilise to the weighted average of their neighbour pixels.

Implementation

The algorithm is very simple to implement. The following is our implementation of the algorithm in OpenCV:

// Constants

#define FDII_A 0.073235

#define FDII_B 0.176765

#define FDII_C 0.125

// Kernel

double FDIIKernel[][9] = {

{ FDII_A, FDII_B, FDII_A,

FDII_B, 0.0, FDII_B,

FDII_A, FDII_B, FDII_A },

{ FDII_C, FDII_C, FDII_C,

FDII_C, 0.0, FDII_C,

FDII_C, FDII_C, FDII_C },

};

// Main algorithm:

// Repeatedly apply kernel

for(int i = 0; i < iter; i++) {

cvFilter2D(out, out, kern);

cvCopy(image, out, mask2);

}

6



Results

(a) image (b) result

Strengths & Limitations

The algorithm’s strength lies in its simplicity, being very easy to understand and implement. Although the
algorithm is simple to implement, it gives decent results. This algorithm is very fast, and is able to preserve
general color information and some low-frequency texture.

The algorithm however, produces results which are quite blurry. More importantly, the visual continuity
at the image edges seem to be pretty bad; if one looks enough,the visual discontinuity at the region boundaries
can be quite easily seen.

Conclusion

This algorithm is the simplest inpainting algorithm we have come across in our research, requiring only
repeated image convolution. While it probably isn’t the best at producing visually hard to detect inpainting
results, it does give a solid starting point for such a simple algorithm.

7



Details: Image Inpainting (SIGGRAPH 2000)

Overview

This algorithm is based on the paper [2]. Originally published in SIGGRAPH 2000, it is referenced very
extensively, and inspired a whole class of algorithms with its ideas. The algorithm is based on research into
inpainting methods used by skilled artists.

The algorithm iteratively propagates image information along the image isophotes (the direction of con-
tours of the image with similar intensity). This is done by numerically solving the partial differential
equation:

∂I

∂t
= ∇⊥I · ∇∆I

for image intensity I inside the region to be filled. The goal is to solve this equation to a steady state,
such that

∇⊥I · ∇∆I = 0

which means the image intensities are constant in the direction of image isophotes.

Algorithm

The algorithm is divided into two parts: the inpainting steps and the anisotropic diffusion steps. During the
inpainting steps, the image is updated iteratively using the formula:

In+1(i, j) = In(i, j) + ∆tInt (i, j),∀(i, j) ∈ Ω

Where n is the inpainting step ”time”, (i, j) are pixel co-ordinates, δt is the ”climb rate” or ”rate of
improvement”, and Itn(i, j) stands for the update of the image at time n. This is only run for pixels inside
the region Ω, the region to be inpainted.

The update of the image is given by:

Itn(i, j) = ~δLn(i, j) · ~Nn(i, j)

Where ~δLn(i, j) represents the change in the image laplacian, Ln(i, j), and ~Nn(i, j) is the direction of
the isophote. This effectively projects the gradient of the laplacian onto the normal of the isophote, which
is a calculation of the change of information along the isophote.

The anisotropic diffusion equation is described in the paper [2] as follows:

∂I

∂t
(x, y, t) = gε(x, y)κ(x, y, t)|∇I(x, y, t)|,∀(x, y) ∈ Ωε

where Ωε is a dilation of the inpainting region Ω with radius ε, κ is the Euclidean curvature of the
isophotes of I, and gε(x, y) in Ωε such that gε(x, y) = 0 in ∂Ωε, and gε(x, y) = 1 in Ω.

Implementation

The discretization of the above image update formula is given as follows (from the paper [2]):

Int (i, j) =
(
~δLn(i, j) · ~̂N(i, j, n)

)
|∇In(i, j)|,

~δLn(i, j) := (Ln(i+ 1, j)− Ln(i− 1, j), Ln(i, j + 1)− Ln(i, j − 1)),

Ln(i, j) = Inxx(i, j) + Inyy(i, j),

8



~̂N(i, j, n) =
~N(i, j, n)

| ~N(i, j, n)|
:=

(−Iny (i, j), Inx (i, j))√
(Inx (i, j))2 + (Iny (i, j))2

,

βn(i, j) = ~δLn(i, j) · ~̂N(i, j, n)

and

|∇In(i, j)| =


√

(Inxbm)2 + (InxfM )2 + (Inybm)2 + (InyfM )2, when βn > 0√
(InxbM )2 + (Inxfm)2 + (InybM )2 + (Inyfm)2, when βn < 0

Where the subindex b denotes backwards difference (this pixel minus the previous pixel), and f (the next
pixel minus this pixel). The subindexes m and M mean minimum or maximum between the derivative and
zero respectively.

Ln is the lagragian of the image, an estimation of the ”smoothness”, and is in our implementation
estimated using the simple lagragian kernel: 0 1 0

1 −4 1
0 1 0


The isophote norm is estimated by first getting the image gradient, then rotating the gradient vector

by 90 degrees. The image gradient is implemented in our algorithm using simple central differences. If the
central differences yield a 0-lengthed vector, then the radius of the central differences is increased until the
algorithm finds a suitable gradient, pr hits a maximum radius, in which case it just returns the 0-lengthed
vector as the gradient.

The algorithm estimates the dot product using a slope-limited isophote norm, in order to drastically
improve the numerical stability of the algorithm. It breaks down the isophote vector into two components:
the direction and the length. The length is then estimated using the mentioned slope-limited equation above.

Our implementation of anisotropic diffusion uses a refactored version of the code in from [6].

Results

(a) image 1 (b) result 1

9



(a) image 2 (b) result 2

(a) image 3 (b) result 3

Strengths & Limitations

This algorithm produces very good structural results. The image structure information ( lines, curvesetc)
are very well interpolated / extrapolated inside the region, better than any other algorithm we have came
upon in our research so far.

However, this algorithm is numerically unstable, and very slow to run. The improvement rate parameter
must be carefully tweaked; too small and the algorithm takes forever to run, too large and the algorithm
numerically explodes. The algorithm can easily take many hours to run on large images or large inpainting
regions.

The algorithm also does not produce texture information. So when applied to large regions, it will
preserve the structural information, but still suffer from inevitable blurring that all algorithms of the PDE
class (that solve to some extent the above partial differential equation in order to inpaint the image) suffer
from.

However, this algorithm does not make use of any image patch information, so is able to recover image
data from very limited border region information (such as the polar bear noise example above).

This algorithm would be most suited to images with a lot of structure, but not a lot of stochastic texture.
The inpainting region is most suited to this algorithm when it is disconnected and regions have small radii.

Conclusion

While this algorithm is only able to provide results for areas with small radii, and takes a very long time to
run, and also requires careful adjustments to parameters, the results it produces can be absolutely fantastic.

This algorithm is the building block basis of almost every modern image inpianting algorithm, and is
referenced by nearly every image inpainting paper weve come across in our research. By understanding and
implementing this paper, we have gained a very strong understanding of the very basic starting ideas, and
we are able to see how these ideas have progressed through the last decade from this starting point.

10



Details: Image Inpainting Technique Based on the Fast Marching
Method

Overview

This algorithm developed by Alexandru Telea is based on the PDE-based inpainting method in [2]. The
algorithm attempts to improve on the speed of PDE-based inpainting, which requires iterative numerical
methods and complicated anisotropic blurring. The improvement in speed relies on estimating the value of
a pixel to be inpainted based on a neighbourhood of known pixels around it. In this method, each pixel is
only inpainted once, which is a large improvement over iterative methods, which may run for many iterations
before converging and are known for numerical stability issues.

The algorithm describes a method of estimating the intensity of a pixel on the inpainting boundary δΩ
based on the known neighbourhood of that pixel. Given this method, the Fast Marching algorithm is used to
determine the order in which border pixels are inpainted - that is, from the least distance to known pixels to
greatest. By inpainting in this way, the inpainting area Ω reduces in size by δΩ as the algorithm progresses.

Algorithm

The algorithm uses the Fast Marching algorithm to solve the Eikonal equation:

|∇T | = 1 on Ω, T = 0 on δΩ

to ensure that always select the pixels closest to the known area of the image first. The level sets of T
correspond to boundary δΩ as Ω reduces in size. The Fast Marching algorithm is described in more detail
in original paper.

Given that we have selected a pixel p to inpaint, the intensity of p is given by a function of all points q ∈
B(p), where B(p) are all pixels within a fixed radius ε to p which have a known intensity (the ‘neighbourhood’
of p):

I(p) =

∑
q∈B(p) w(p, q)[I(q) +∇I(q)(p− q)]∑

q∈B(p) w(p, q)

where the image gradient ∇I(q) is calculated using central differences and w(p, q) is the following normalised
weighting function:

w(p, q) = dir(p, q) · dst(p, q) · lev(p, q)

dir(p, q) =
p− q
||p− q||

· ∇T (p)

dst(p, q) =
1

||p− q||2

lev(p, q) =
1

1 + |T (p)− T (q)|

with a directional component ‘dir’, geometric distance component ‘dst’ and level set component ‘lev’. The
weighting function gives more weighting to pixels along the image gradient normal, pixels closer to p and
pixels closer to the isoline of p.

Implementation

Implementation details and optimisation are fully discussed in the original paper. Our implementation is
provided by OpenCV in the function ‘cvInpaint’.

11



Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting

Overview

This paper reveals that the PDE presented in [2] is analogous to the problem of convection in an incom-
pressible fluid from the field of fluid dynamics. They draw expertise from the field of fluid dynamics to yield
a solution to the problem of image inpainting based on the Navier-Stokes equations.

Algorithm

The PDE in [2] can be solved with the same techniques used to solve fluid flow in 2 dimensions.
There exists known equations [6] for solving fluid flow for a rectangular region, given boundary conditions,

that is, given an empty rectangular region with flow information on the boundary, we can extrapolate the
eventual convergent state of the fluid flow. The paper provides ways to generate the boundary information
required by the fluid equations from the context of image inpainting and the information at the boundary
of the inpainting region.

From the solution for a rectangular inpainting region, the paper presents a solution for arbitrary mask
shapes by first obtaining the smallest rectangular region around the inpainting area Ω and using that as the
new inpainting area Ω̄. The pixels in the difference of the areas, Ω/Ω̄ is assigned back to Ω̄ at each iteration,
forcing the values of Ω/Ω̄.

Implementation

Our implementation is provided by OpenCV in the function ‘cvInpaint’.

Conclusion

The paper formulates the solution to the PDE in [2] as a physics computation of the solution to a system
of fluid flow in 2D. From testing of the OpenCV implementation of the algorithm, we deduce that it is very
fast compared to the original algorithm presented in [2]. The algorithm itself, however, is founded on the
mathematics of fluid dynamics and this poses a significant problem to anyone attempting to implement it.

12



Details: Exemplar Based Image Inpainting

Overview

This algorithm is based on the paper [3]. Previous texture synthesis image inpainting algorithms require
large amounts of user interaction. The key observations behind this algorithm are that:

1. Exemplar-based synthesis suffices. This means that exemplar-based texture synthesis does very well
to preserve, propagate and extend linear image structure. Exemplar-based texture synthesis is based
around finding patches in the rest of the image which are similar to the known parts of the image patch
to be filled, and then copying the missing information over. This mechanism will do well to preserve
and extend and image isophotes we had in the known parts of our target patch.

2. Filling order is critical. This means that the order in which exemplar-based synthesis is carried out
has a large impact on the resulting quality.

Figure 5: Example showing the importance of filling order. Image source: [3]

This leads to the exemplar-based inpainting algorithm. The algorithm first estimates the importance, or
priority of our current boundary pixels of the region to be inpainted, which will respect image isophotes. It
then finds the border pixel with the largest priority. It then finds a similar patch from the source regions
(the regions not covered by the mask), and copies the missing information over.

This results in an algorithm that has the advantages of both texture-synthesis based methods (preserves
and extends texture) and Partial Differential Equation (PDE) based methods (which preserve and extend
structure).

Algorithm

The algorithm first needs to be able to estimate border pixel priorities. Given a patch Ψ~p centered at the
point ~p for some ~p ∈ δΩ, the algorithm defines its priority P (~p) as:

P (~p) = C(~p)D(~p).

The terms are defined as follows:

C(~p) =

∑
~q∈Ψ~p∩(I−Ω) C(~q)

|Ψ~p|
,

D(~p) =
|∇I⊥~p · ~n~p|

α

13



Figure 6: Notation diagram. Given patch Ψ~p, ~n~p is the normal to the contour δΩ of the target region Ω and
∇I⊥~p is the isophote at point ~p. The entire image is denoted with I. Image and caption source: [3].

Where |Ψ~p| is the area of Ψ~p, α is a normalization factor (e.g. 255 for a greyscale image), ~n~p is a unit
vector orthogonal to the front of δΩ in the point ~p, and ⊥ denotes the orthogonal operator. The priority
P (~p) is computed for every border patch, with distinct patches for each pixel on the boundary of the target
region. Paragraph source: [3].

The term C(~p) is referred to as the ”confidence” term, and will model how confident the algorithm is
about a patch. This confidence value will be designed such that it gives high confidence values to patches
which are almost filled; as the exemplar based patch matching has a high chance of finding the correct patch.
As the image progresses from the border of the region into the center areas of the region, the confidence will
decay, reflecting that the algorithm is less sure about the center areas of the inpainting region than the areas
close to the border.

The term D(~p) is referred to as the ”data” term. This will model the amount of structure information
that this patch contains, and how relevant is this structure to our patch. This term will boost the priority
of a patch that an isophote ”flows” into. This will encourage strong linear image structure to be inpainted
first, thus not be overridden by patches with less structure.

After the priorities for all border pixel have been detemined, the border patch centered at the border
pixel with the highest priority will be chosen to be filled. Call this chosen border patch Ψ~̂p.

The algorithm then searches in the source region the patch which is the most similar to Ψ~̂p, or in other
words, searches in the source region for the exemplar patch Ψ~̂q:

Ψ~̂q = arg min
Ψ~q∈Φ

(
d(Ψ~̂p,Ψ~q)

)
Distance d(Ψ~̂a,Ψ~b) is measured using simple sum of squared differences (SSD) over each patch pixel.

Once we have found the exemplar Ψ~̂q, we simple copy the missing information over from Ψ~̂q to Ψ~̂p:

Ψ~̂p(~x) = Ψ~̂q(~x),∀~x ∈ Ω

14



Figure 7: Visualisation of the process. Image source: [3].

After this, the algorithm then needs to update the confidence values. The confidence values are updated
only for the pixels in our border patch Ψ~̂p which were missing and has just been filled in:

C(~p)′ = C(~p),∀~p ∈ Ψ~̂p ∩ Ω

The boundary pixels and their priorities are then re-computed, and this whole process is then repeated,
until there are no more boundary pixels left and the whole region has been filled.

Implementation

The implementation of the above priority formulae is quire straightforward. While the paper [3] suggests
a different method to calculate the normal to the region in the data term D(~p), we used a Sobel gradient
operator on the black-and-white mask image. This gave sufficient results. Image isophotes are determined by
turning the image gradient at the pixel by 90 degrees. To estimate these image gradients, a similar method
is used to our implementation of Bertlamio Image Inpainting [2], where a simple central difference is used
with increasing radius until a valid non-zero length gradient vector is achieved.

Implementation gets slightly more complicated when it comes to the exemplar matching. A naive brute
force solution will work, but will take about 1 full second on a 2.53 mhz machine, to find the matching patch
from the source region.

So to speed this up, we have implemented 3 optimisations.
First, we implemented early exit. As the algorithm loops through every pixel in the patch to compute the

distance of the boundary patch to the proposed source exemplar patch, it continually compares the current
distance to the distance to the best source patch found so far. Since further pixels can only ever add to
the current distance, if our current distance is already bigger than the best distance, then there is no way
this patch is going to end up with smaller distance than the best patch we have found so far. Thus, we can
stop computing adding the distances for the remaining pixels and just discard this proposed patch. This
approximately doubles the speed of the algorithm when running on the CPU.

Secondly, we have implemented extraction of source patches only from within a certain radius around the
inpainting mask region. This both dramatically decreases the number of source patches we have to search
through, and stops the algorithm from erroneously choosing far away patches are most likely have nothing
to do with the information being filled.

Finally, we have managed to implement exemplar searching using the systems Graphics Processor Unit,
or GPU. This is done using the nVidia CUDA system. Patch data, image data and mask data, along with

15



parameters, are copied into GPU memory, where the massively parallel architecture of todays extremely
powerful graphics cards can be utilized.

This optimization decreases brute force exemplar searching that usually takes 500ms to taking a negligible
amount of time, and the actual boundary priority calculations become the major bottleneck of the algorithms
speed.

Implementing the boundary priority calculation in the GPU is also possible, but will take a much longer
time, since basically the whole algorithm must be coded for the GPU to run in parallel.

Results

(a) image 1 (b) result 1

(a) image 2 (b) result 2

16



(a) image 3 (b) result 3

Strengths & Limitations

The results from this algorithm are quite astonishing. Unlike PDE methods, which result in inevitable blur-
ring of the inpainted region, this method uses texture synthesis, and therefore preserves texture information.
Furthermore, it is also sensitive to image structure, and will propagate along strong image isophotes to
preserve and extend the structure.

However, this algorithm is not without its disadvantages. Since it is a texture synthesis based method,
it will perform badly when the inpainting region is spread out along most of the image, and thus there is
not many valid source patches to choose from. One example of this is the polar bear example in the results
section of our Bertalmio algorithm, where the algorithm has a very hard time finding a list source patches
to use.

The algorithm also requires parameter tweaking in order to get the most effective results. Patch sizes
must be manually chosen, with regards to the size of features in the image. With too large a patch size, the
algorithm will have a high chance of picking a ”bad” patch. With too small a patch size, textures will be
repeated in a noticeable pattern, and the algorithm will also take much longer to run.

Conclusion

Understanding and implementing this algorithm allowed us to understand the ideas behind modern inpainting
techniques, which aim to synthesize both texture and structure. It also provided us with some insight into
how the parallel processing power of modern GPUs can be relevant to modern texture synthesis based
inpainting techniques.

17



Details: Image Inpainting Based On Local Optimisation (ICPR
2010)

Overview

This algorithm was originally resented in [7]. It is by far the most recently published paper we have studied
in our research into the field. While this algorithm is very slow, and the results are comparable to the
algorithm presented in [3], it does show some margin of improvement. This algorithm’s ideas represent, to
us, the flagship of image inpainting methods; the most recent ideas. The algorithm is based upon exemplar-
based image inpainting [3]. The most important border patch to fill uses exactly the same method as [3].
However, instead of simply selecting the most similar patch, this algorithm looks at neighbouring pixels, and
finds a local optimisation of the current patch and its neighbours.

Algorithm

1. Select the border pixel with highest priority, using the method in [3].

2. For every neighbour, find a list of best k matching (we used k = 10) patches from the source region.

3. Find the optimum patch for this region by maximizing the following joint distribution probability
formula:

P (Ψp, xp, xp̃) = P (Ψp|xp)P (xp|xp̃)P (xp̃)

where Ψp is the image, xp is a target patch, and xp̃ is a neighbour patch.
The term P (Ψp|xp) represents the similarity of the patch to the target region, P (xp|xp̃) represents the
similarity of the patch to its neighbours, and P (xp̃) represents the ”importance” of this neighbour.

P (Ψp|xp) = exp
(
− d(xp,Ψp)

2
)

P (xp|xp̃) = arg min
xp̃

(
exp
(
− d(xp̃, xp)

2
))

P (xp̃) is the border pixel priority value for xp̃.

4. Fill in the missing information from the chosen source patch with maxim probability.

5. Repeat from step 1 until whole image region has been filled.

Results

(a) image (b) result

Implementation

Much of the code has is shared with our code for exemplar-based image inpainting [3]. The new distance
patch matching functions are also been implemented for the GPU.

18



Graphical User Interface

As we stated in our project goals, we aim not only to produce a simple working demo, but also to produce
a workable program. Since there are a lot of methods for image inpainting with different advantages and
disadvantages each with many parameters to adjust, we have gone with the decision to build a graphical
user interface.

The graphical user interface would allow switching between algorithms, easy adjustments of algorithm
parameters, easy image and mask loading/saving. It would also provide the user with a simple mask editing
interface.

The interface was developed in Win32 Common Controls API. The image displaying and mask editing
mouse events are handled by OpenCV GUI. The two GUI APIs seamlessly integrate for the purposes of this
project.

(a) Main window
interface

(b) Mask editor interface

Figure 8

Scope & Specification

The project, from our point of view, has been quite challenging. Every algorithm has to be researched,
understood, and among them, 4 of them implemented from bare scratch, with 2 of them having parts imple-
mented on the GPU. On top of that, the user interface had to be designed, then built in Win32 GUI from
scratch. We believe that native Win32 GUI code will be the most versatile, elegant, portable and compatible
for the end user (no additional GUI libraries have to be installed / included with package, simply download
the executable then run).

Project Name: Image Inpainter
Version: 1.0
Supported image separation methods: 4
Supported algorithms: 7
Supported file formats: BMP, JPEG, PNG
Memory requirements: 512MB+ ram, 1024MB recommended for large images
CPU requirements: Any x86 / x64 processor
Operating system: c©Microsoft c©Windows 2000 or newer, x86 or x64
GPU requirements: Any CUDA-enabled c©Nvidia graphics card; c©GeForce 8600 or newer

19



Group

• Xi Chen: Algorithm development, evaluation and report, general research, user interface developing,
user interface designing.

• Willy Mai: Testing, algorithm research, algorithm development, evaluation and report.

Project Conclusion

We have learnt a lot from this project. Our outcomes were very successful; we have gained the understanding
we wanted, including reading and understanding some recent cutting edge technology papers; and we have
also managed to develop a simple, powerful, versatile tool for image inpainting with some great results.

Future Expansions

As suggested by a tutor, one possible direction of expansion could be porting the implementations to a
handheld device, which would give the project more commercial marketability.

The more contemporary image inpainting algorithms could be implemented.
Making more use of the GPU is also a possible extension, as graphics processing units were designed for

the very task of image processing, more or less. Image processing required by image inpainting often will
run very well on the GPU; one such example being image patch template matching.

References

[1] Manuel M. Oliveira, Brian Bowen, Richard McKenna and Yu-Sung Chang, Fast Digital Image Inpainting,
Imaging and Image Processing (VIIP 2001), Marbella, Spain, September 3-5, 2001. Available at http:

//www.inf.ufrgs.br/~oliveira/pubs_files/inpainting.pdf

[2] Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles and Coloma Ballester, Image Inpainting, SIG-
GRAPH 2000, available at http://www.dtic.upf.edu/~mbertalmio/bertalmi.pdf

[3] Alexandru Telea An Image Inpainting Technique Based on the Fast Marching Method, Eindhoven Uni-
versity of Technology

[4] Marcelo Bertalmio, A. L. Bertozzi, Guillermo Sapiro, Navier-Stokes, Fluid Dynamics, and Image and
Video Inpainting, available at http://www.dtic.upf.edu/~mbertalmio/final-cvpr.pdf

[5] A. Criminisi, P. Perez and K. Toyama, Region Filling and Object Removal by Exemplar-Based Image
Inpainting, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEP 2004

[6] Wilson Au and Ryo Takei, Image Inpainting with the Navier-Stokes Equations, available at http://www.
math.ucla.edu/~rrtakei/gradProj/930project.pdf

[7] Jun Zhou and Antonio Robles-Kelly, Image Inpainting Based on Local Optimisation, ICPR 2010, available
at http://users.cecs.anu.edu.au/~junzhou/papers/C_ICPR_2010.pdf

20


